Some Basic Math Creates A Low-Cost Nonlinear Thermocouple Interface

ROBERT S. VILLANUCCI

WENTWORTH INSTITUTE OF TECHNOLOGY, BOSTON, MASS. villanuccir@wit.edu

ED ONLINE 19436

Instead of a software linearization algorithm, this circuit uses a hardware solution to perform the required curve fitting for a nonlinear sensor.

Measurement and process control loops often use 8-bit microcontrollers. The devices are inexpensive and widely available, and they can be programmed in many popular high-level languages—like C and Basic. However, if the loop requires a nonlinear sensor, the designer faces the added challenge of having to develop a software linearization algorithm.

One solution is to design hardware to perform the required curve fitting before the sensor's output signal is applied to the microcontroller's analog-to-digital converter (ADC) input. This is an especially attractive solution if processor memory is limited and cost and component count can be kept low. An added benefit is a small printed-circuit board (PCB) footprint.

An example is the circuit shown in the figure, which uses a type-E thermocouple to measure temperatures that are expected to vary from 0°C to 500°C. The circuit's output ranges from 0 to 5 V—the full span of the ADC—and can be expressed as a linear system equation:

ROBERT S. VILLANUCCI, professor, holds an A.Eng. from Wentworth Inst., Boston, Mass., a BSET from Northeastern University, and an MSEE from Tuffs University, Medford, Mass

$$V_{\rm o} \approx \left(\frac{10 \text{ mV}}{^{\circ}\text{C}}\right) T_{\rm M}$$
 (1)

The thermocouple amplifier section consists of a thermocouple cold-junction compensator (IC1), an op amp (IC2), and accompanying circuitry. IC1 tracks ambient temperature (T_R) and adds a correction voltage (V_C) to cancel the cold-junction voltage (V_R) created when chromel-constantant hermocouple leads are attached to the copper pads of a PCB. IC2 then amplifies the thermocouple's temperature-dependent signal (V_M) by 175 to produce V_T prior to linearization. A gain of 175 eliminates the need for additional amplification during curve fitting.

Low-pass filter C1-R2 has a pole at approximately 6 Hz to remove power-supply noise.

You can use an Excel spreadsheet to create the nonlinear mathematical relationship between the output of the thermocouple amplifier (V_T) and the input to the ADC (V_O) . The table shows 11 temperature entries for T_M (0°C to 500°C in 50°C steps) with their corresponding thermoelectric voltages, V_M . The values of V_M were derived from a standard type-E thermocouple reference table. Also shown are V_T and V_O , which are charted using the (XY) Scatter feature of the software. The equation for V_O is created using the software's trendline feature:

$$V_0 = 0.0342 \text{ V} + 0.8703 \text{ V}_T - 0.0165 \text{ V}_T^2$$
 (2)

An analog multiplier (IC3) and five 1% resistors implement this equation, a second-order polynomial of the form:

$$V_0 = a + bV_T + cV_T^2$$
 (3)

The four (X and Y) inputs of IC3 are wired to create a negative square term that's scaled at the chip's output by an internal scale factor of 0.1 V. Comparing terms, we note that c must equal 0.0165. Since R3 and R4 form a voltage divider to attenuate $V_{\rm T}$, we can express c as follows:

$$c = \frac{1}{10} \left(\frac{R4}{R3 + R4} \right)^2 \tag{4}$$

You can then solve for R3 by substituting c = 0.0165 and selecting a value for R4, which for this design was chosen to be $10 \text{ k}\Omega$.

Resistors R5, R6, and R7 form a passive adder to create the offset term, a, and the linear coefficient, b, in Equation 3. The output of the passive adder is applied directly to the Z-input of IC3, which adds the offset and linear terms to the square term. Again compar-

ing terms, a (Equation 3) equals 0.0342 V (Equation 2). We can express this as:

$$a = \frac{bV_{REF}R5}{R6}$$
 (5)

To design this part of the passive adder, we chose a stable 2.500-V reference for V_{REF} , selected R5 to be 10 k Ω , and solved for R6.

Finally, compare b (*Equation 3*) with the corresponding value of 0.8703 (*Equation 2*) and express the linear coefficient b as:

$$b = \frac{1}{\left(1 + \frac{R5}{R7} + \frac{R5}{R6}\right)} \tag{6}$$

This equation is solved to determine the final component, R7:

$$R7 = \left(\frac{R5R6}{\left(\frac{1-b}{b}\right)R6-R5}\right) \tag{7}$$

We evaluated the circuit by replacing the thermocouple with a low-impedance voltage source to simulate V_M . IC3's output voltage (V_O) exhibited a worst-case error of about 3.4°C at 0°C $(V_O=0.034~V)$ and an error of -1.8°C at 500°C $(V_O=4.982~V)$ at full scale. At 250°C, a mid-range error of

0.2°C ($V_O = 2.502$ V) was recorded.

Reference:

"IC Generates Second-Order Polynomial," *Electronic Design*, Aug. 5, 1993, p. 83.

T _M (°C)	V _M (V)	V _T = 175 V _M (V)	Vo (V)
0	0	0	0
50	0.003047	0.533225	0.5
100	0.006317	1.105475	1
150	0.009787	1.712725	1.5
200	0.013419	2.348325	2
250	0.017178	3.00615	2.5
300	0.021033	3.680775	3
350	0.024961	4.368175	3.5
400	0.028943	5.065025	4
450	0.03296	5.768	4.5
500	0.036999	6.474825	5

READER SERVICE 80